Nascent Focal Adhesions Are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts

نویسندگان

  • Karen A. Beningo
  • Micah Dembo
  • Irina Kaverina
  • J. Victor Small
  • Yu-li Wang
چکیده

Fibroblast migration involves complex mechanical interactions with the underlying substrate. Although tight substrate contact at focal adhesions has been studied for decades, the role of focal adhesions in force transduction remains unclear. To address this question, we have mapped traction stress generated by fibroblasts expressing green fluorescent protein (GFP)-zyxin. Surprisingly, the overall distribution of focal adhesions only partially resembles the distribution of traction stress. In addition, detailed analysis reveals that the faint, small adhesions near the leading edge transmit strong propulsive tractions, whereas large, bright, mature focal adhesions exert weaker forces. This inverse relationship is unique to the leading edge of motile cells, and is not observed in the trailing edge or in stationary cells. Furthermore, time-lapse analysis indicates that traction forces decrease soon after the appearance of focal adhesions, whereas the size and zyxin concentration increase. As focal adhesions mature, changes in structure, protein content, or phosphorylation may cause the focal adhesion to change its function from the transmission of strong propulsive forces, to a passive anchorage device for maintaining a spread cell morphology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration.

Cell migration involves complex physical and chemical interactions with the substrate. To probe the mechanical interactions under different regions of migrating 3T3 fibroblasts, we have disrupted cell-substrate adhesions by local application of the GRGDTP peptide, while imaging stress distribution on the substrate with traction force microscopy. Both spontaneous and GRGDTP-induced detachment of...

متن کامل

Vinculin–actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth

In migrating cells, integrin-based focal adhesions (FAs) assemble in protruding lamellipodia in association with rapid filamentous actin (F-actin) assembly and retrograde flow. How dynamic F-actin is coupled to FA is not known. We analyzed the role of vinculin in integrating F-actin and FA dynamics by vinculin gene disruption in primary fibroblasts. Vinculin slowed F-actin flow in maturing FA t...

متن کامل

Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions.

Integrins are transmembrane receptors that, upon activation, bind extracellular ligands and link them to the actin filament (F-actin) cytoskeleton to mediate cell adhesion and migration. Cytoskeletal forces in migrating cells generated by polymerization- or contractility-driven "retrograde flow" of F-actin from the cell leading edge have been hypothesized to mediate integrin activation for liga...

متن کامل

Cross-correlated fluctuation analysis reveals phosphorylation-regulated paxillin-FAK complexes in nascent adhesions.

We used correlation methods to detect and quantify interactions between paxillin and focal adhesion kinase (FAK) in migrating cells. Cross-correlation raster-scan image correlation spectroscopy revealed that wild-type paxillin and the phosphorylation-inhibiting paxillin mutant Y31F-Y118F do not interact with FAK in the cytosol but a phosphomimetic mutant of paxillin, Y31E-Y118E, does. By extend...

متن کامل

Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment.

We investigate both theoretically and experimentally how stress is propagated through the actin cytoskeleton of adherent cells and consequentially distributed at sites of focal adhesions (FAs). The actin cytoskeleton is modeled as a two-dimensional cable network with different lattice geometries. Both prestrain, resulting from actomyosin contractility, and central application of external force,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 153  شماره 

صفحات  -

تاریخ انتشار 2001